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Wait, what?

Zero-Value and Correlation Attacks on CSIDH and SIKE

3



Wait, what?

Zero-Value and Correlation Attacks on CSIDH and SIKE

• side-channel attacks
• power analysis whether secret computation pass over certain values
• leaking secret information

3



Wait, what?

Zero-Value and Correlation Attacks on CSIDH and SIKE

• isogeny-based schemes
• CSIDH : allows for non-interactive key exchange
• SIKE : key encapsulation mechanism
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Zero-value attacks



Motivation: Zero-value attacks

Zero-value attacks: Identify secret-dependent
occurrences of zero-values in the power trace.
⇝ information on private key.

• Proposed for SIDH in [Koziel–Azarderakhsh–Jao-2017].
• Demonstrated for SIKE in [De Feo–El

Mrabet–Genêt–Kaluđerović–de Guertechin–Pontié–Tasso-2022].
• Does this work in CSIDH too?
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Isogeny paths in CSIDH



CSIDH

• Prime of the form p = 4 · ℓ1 · · · · · ℓn − 1 with small distinct odd primes ℓi .

• Work with supersingular elliptic curves over Fp.
⇝ #E (Fp) = p + 1 for all involved curves.

• We can efficiently compute isogenies of degrees ℓi .
• Each of the ℓi -isogeny graphs consists of one or more cycles with identical

vertex set.
• CSIDH isogeny graph: union of these cycles
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CSIDH

Toy example: p = 659 = 4 · 3 · 5 · 11 − 1

Alice
secret: (+,+,−)

⇝ (2, 0,−1)

E

EA

EB

EAB

Bob
secret: (+,−,+)

⇝ (−1, 1, 1)
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CSIDH

Ea : y 2 = x3 + ax2 + x

Ea′ : y 2 = x3 + a′x2 + x

ℓi -isogeny: (+)

Eã : y 2 = x3 + ãx2 + x

ℓi -isogeny: (−)
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ℓi -isogeny: (−)

8



CSIDH

Ea : y 2 = x3 + ax2 + x

Ea′ : y 2 = x3 + a′x2 + x

ℓi -isogeny: (+)
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CSIDH

Usual representations of curves Ea in projective coefficients:

• Montgomery form (A : C) with a = A/C and C non-zero
• alternative Montgomery form (A + 2C : 4C) with a = A/C and C non-zero

Our attack aims at two types of vulnerable representations:

• Zero-value representation: Represents the Montgomery coefficient a ∈ Fp in
projective coordinates (α : β) such that α = 0 or β = 0.

• Strongly-correlated representation: Represents the Montgomery coefficient
a ∈ Fp in projective coordinates (α : β) such that the bit representations of
α and β are bit shifts.

9
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Vulnerable curves in CSIDH



Vulnerable Curves

E0 is a valid supersingular curve in the usual CSIDH setting.

• E0 in Montgomery form: (0 : C) with C ∈ Fp\{0}
⇝ zero-value representation

• E0 in alternative Montgomery form: (2C : 4C) with C ∈ Fp\{0}
⇝ strongly-correlated representation if 2C < p/2

⇝ Both are detectable via side-channel analysis!

Also works for E6 in alternative Montgomery form: (8C : 4C) with C ∈ Fp is
strongly-correlated if 4C < p/2.
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Attacking SQALE and CTIDH



Attack idea

Idea: Guess a secret key bit, and let the target’s isogeny path pass over E0 or E6

if the guess was correct.
⇝ Correct guess can be confirmed by side-channel analysis.

• Constant-time CSIDH usually has an ordered evaluation of isogenies
(modulo point rejections).

• Task: Find out the direction of the next step
(also considering dummy isogenies).
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Generic attack for the k-th bit

• Assume we know the first k − 1 isogeny steps ak−1 = (−,+,−, · · · ,−).

• Guess e (+ or −) and set ak,e = ak−1 || e.
• Pass EPK calculated using a−1

k,e as public key.
• If the k-th step passes over E0, the guess was correct;

otherwise, guess a different e and repeat.

EPK Ea

Ea′

E0

e = −1

e = 1

7

3

SCA

SCA
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SQALE [Chávez-Saab–Chi-Domínguez–Jaques–Rodríguez-Henríquez-2020]

• SQALE uses the alternative Montgomery form (A + 2C : 4C).
⇝ we can detect E0.

• SQALE uses large parameters (2048-bit to 9216-bit primes) and secret keys
from {−1, 1}n.

• Ordered evaluation
• Adaptively recover key bits ei with the generic approach.
• Each step can fail with a probability of 1/ℓi

⇝ increases the number of measurements.

13
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CTIDH [Banegas–Bernstein–Campos–Chou–Lange–Meyer–Smith–Sotáková-2021]

• CTIDH switches between Montgomery and alternative
Montgomery form.
⇝ we can detect E0.

• CTIDH uses a more complicated key space and hides
the actual isogeny degrees in use.

• CTIDH uses an ordered evaluation, but we have to
guess the direction and the degree of each isogeny.

• Each step can fail with a probability of ≈ 1/ℓi

• This increases the number of measurements.

Figure 1: CTIDH
aka the isogeny bus1

1Talk by Krijn Reijnders: https://tinyurl.com/CTIDHBeepBeep
Original pic of bus by Teddy O on https://unsplash.com/photos/jtpcrnqP2Mc
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• Each step can fail with a probability of ≈ 1/ℓi

• This increases the number of measurements.

Figure 1: CTIDH
aka the isogeny bus1

1Talk by Krijn Reijnders: https://tinyurl.com/CTIDHBeepBeep
Original pic of bus by Teddy O on https://unsplash.com/photos/jtpcrnqP2Mc
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Simulation



Simulation

Simulation of our attacks exploiting strong correlation:

• We require ordered evaluations
⇝ exact positions of computations involving A and C resp. A + 2C and 4C
are known!

• Simulation gets Hamming weights of all limbs and adds noise.
• Checks for strong correlation.
• average #measurements in SQALE-2048: 8,273
• average #measurements in CTIDH-511: 85,000
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Simulation

Simulation for different noise levels (signal-to-noise-ratio):
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Simulation

(a) Correlation results without noise. (b) Correlation results with SNR of 1.40.
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Countermeasures

• Masking isogeny: Compute a ∗ E as z−1 ∗ (a ∗ (z ∗ E )) with a masking
isogeny z ∗ E of key space 2k .
⇝ increases required #samples by factor 2k

• Move to the surface:1 Pick p ≡ 7 mod 8 and work on the surface of the
isogeny graph (see [Castryck-Decru-2020]).
⇝ We are not aware of vulnerable curves in this setting.

1Thanks to the reviewers for this suggestion!
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Applicability to SIKE†



SIKE

• The attack applies to SIKE too: E0 and E6

are valid curves in SIKE

• Attack guesses secret bits/trits and detects
which leads to path over E0 or E6.

• Required number of samples:

Scheme SIKEp434 SIKEp503 SIKEp610 SIKEp751
Samples 228 265 320 398

Figure 2: Who is next?1

1PQC2 : Post-Quantum Cryptography Cemetery
Original pic of cemetery by Caleb Fisher on https://unsplash.com/photos/pWLgynLQfgE
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Zero-Value and Correlation Attacks on CSIDH and SIKE†

Thank you!

Paper: https://eprint.iacr.org/2022/904.pdf
Simulation: https://github.com/PaZeZeVaAt/simulation
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