Zero-Value and Correlation Attacks on CSIDH and SIKE †

Institute of Information Science - Academia Sinica 15 December 2022

Fabio Campos^{1,2} Michael Meyer³ Krijn Reijnders² Marc Stöttinger¹

¹RheinMain University of Applied Sciences Wiesbaden, Germany

²Radboud University, Nijmegen, The Netherlands

³University of Regensburg, Germany

Who am I?

- Fabio Campos, https://sopmac.org
- since 2018
 - external PhD student at Radboud University, NL
 - supervisor: Peter Schwabe
 - researcher at University of Wiesbaden, DE
 - implementations of isogeny-based crypto

Who am I?

- Fabio Campos, https://sopmac.org
- since 2018
 - external PhD student at Radboud University, NL
 - supervisor: Peter Schwabe
 - researcher at University of Wiesbaden, DE
 - implementations of isogeny-based crypto
- before 2018
 - collecting money@industry / lecturer@Wiesbaden
 - computer science M.Sc.

Who am I?

- Fabio Campos, https://sopmac.org
- since 2018
 - external PhD student at Radboud University, NL
 - supervisor: Peter Schwabe
 - researcher at University of Wiesbaden, DE
 - implementations of isogeny-based crypto
- before 2018
 - collecting money@industry / lecturer@Wiesbaden
 - computer science M.Sc.
- born in Rio de Janeiro, BR (no questions about football) ;-(

Zero-Value and Correlation Attacks on CSIDH and SIKE

Zero-Value and Correlation Attacks on CSIDH and SIKE

- side-channel attacks
- power analysis whether secret computation pass over certain values
- leaking secret information

Zero-Value and Correlation Attacks on CSIDH and SIKE

- isogeny-based schemes
- CSIDH : allows for non-interactive key exchange
- SIKE : key encapsulation mechanism

- Zero-value attacks
- Isogeny paths in CSIDH
- Vulnerable curves in CSIDH
- Attacking SQALE and CTIDH
- Simulation
- Countermeasures
- Applicability to SIKE

Zero-value attacks

Zero-value attacks: Identify secret-dependent occurrences of zero-values in the power trace. ~> information on private key.

Zero-value attacks: Identify secret-dependent occurrences of zero-values in the power trace. \rightsquigarrow information on private key.

• Proposed for SIDH in [Koziel-Azarderakhsh-Jao-2017].

Zero-value attacks: Identify secret-dependent occurrences of zero-values in the power trace. \rightsquigarrow information on private key.

- Proposed for SIDH in [Koziel-Azarderakhsh-Jao-2017].
- Demonstrated for SIKE in [De Feo-El

Mrabet-Genêt-Kaluđerović-de Guertechin-Pontié-Tasso-2022].

Zero-value attacks: Identify secret-dependent occurrences of zero-values in the power trace. \rightsquigarrow information on private key.

- Proposed for SIDH in [Koziel-Azarderakhsh-Jao-2017].
- Demonstrated for SIKE in [De Feo-El

Mrabet-Genêt-Kaluđerović-de Guertechin-Pontié-Tasso-2022].

Does this work in CSIDH too?

Isogeny paths in CSIDH

• Prime of the form $p = 4 \cdot \ell_1 \cdot \cdots \cdot \ell_n - 1$ with small distinct odd primes ℓ_i .

- Prime of the form $p = 4 \cdot \ell_1 \cdot \cdots \cdot \ell_n 1$ with small distinct odd primes ℓ_i .
- Work with supersingular elliptic curves over 𝔽_p.
 → #E(𝔽_p) = p + 1 for all involved curves.

- Prime of the form $p = 4 \cdot \ell_1 \cdot \cdots \cdot \ell_n 1$ with small distinct odd primes ℓ_i .
- Work with supersingular elliptic curves over 𝔽_p.
 → #E(𝔽_p) = p + 1 for all involved curves.
- We can efficiently compute isogenies of degrees l_i.

- Prime of the form $p = 4 \cdot \ell_1 \cdot \cdots \cdot \ell_n 1$ with small distinct odd primes ℓ_i .
- Work with supersingular elliptic curves over 𝔽_p.
 → #E(𝔽_p) = p + 1 for all involved curves.
- We can efficiently compute isogenies of degrees l_i.
- Each of the *l_i*-isogeny graphs consists of one or more cycles with identical vertex set.

- Prime of the form $p = 4 \cdot \ell_1 \cdot \cdots \cdot \ell_n 1$ with small distinct odd primes ℓ_i .
- Work with supersingular elliptic curves over 𝔽_p.
 → #E(𝔽_p) = p + 1 for all involved curves.
- We can efficiently compute isogenies of degrees l_i.
- Each of the *l_i*-isogeny graphs consists of one or more cycles with identical vertex set.
- CSIDH isogeny graph: union of these cycles

Alice secret: (+,+,-)

Toy example: $p = 659 = 4 \cdot 3 \cdot 5 \cdot 11 - 1$

Toy example: $p = 659 = 4 \cdot 3 \cdot 5 \cdot 11 - 1$

Toy example: $p = 659 = 4 \cdot 3 \cdot 5 \cdot 11 - 1$

Toy example: $p = 659 = 4 \cdot 3 \cdot 5 \cdot 11 - 1$

Ε

Toy example: $p = 659 = 4 \cdot 3 \cdot 5 \cdot 11 - 1$

Ε

Toy example: $p = 659 = 4 \cdot 3 \cdot 5 \cdot 11 - 1$

 E_B

Ε

CSIDH

Toy example: $p = 659 = 4 \cdot 3 \cdot 5 \cdot 11 - 1$

7

$$E_a: y^2 = x^3 + ax^2 + x \bullet$$

$$E_a: y^2 = x^3 + ax^2 + x$$

$$E_{a'}: y^2 = x^3 + a'x^2 + x$$

$$E_{a}: y^{2} = x^{3} + ax^{2} + x \bullet$$
$$\ell_{i}\text{-isogeny:} \quad (+)$$
$$E_{x'}: y^{2} = x^{3} + a'x^{2} + x \bullet$$

CSIDH ₽

$$E_{\overline{a}} : y^{2} = x^{3} + \tilde{a}x^{2} + x$$

$$E_{a} : y^{2} = x^{3} + ax^{2} + x$$

$$\ell_{i}\text{-isogeny:} \quad (+)$$

$$E_{a'} : y^{2} = x^{3} + a'x^{2} + x$$

8

$$E_{a}: y^{2} = x^{3} + \tilde{a}x^{2} + x \bullet$$

$$\ell_{i}\text{-isogeny:} \quad (-)$$

$$E_{a}: y^{2} = x^{3} + ax^{2} + x \bullet$$

$$\ell_{i}\text{-isogeny:} \quad (+)$$

$$E_{x}: y^{2} = x^{3} + a'x^{2} + x \bullet$$

CSIDH ₽

$$E_{\tilde{a}} : y^{2} = x^{3} + \tilde{a}x^{2} + x \checkmark$$

$$\ell_{i}\text{-isogeny:} \quad (-)$$

$$E_{a} : y^{2} = x^{3} + ax^{2} + x \checkmark$$

$$\ell_{i}\text{-isogeny:} \quad (+)$$

$$E_{a'} : y^{2} = x^{3} + a'x^{2} + x \checkmark$$

8

Usual representations of curves E_a in projective coefficients:

- Montgomery form (A : C) with a = A/C and C non-zero
- alternative Montgomery form (A + 2C : 4C) with a = A/C and C non-zero

Usual representations of curves E_a in projective coefficients:

- Montgomery form (A : C) with a = A/C and C non-zero
- alternative Montgomery form (A + 2C : 4C) with a = A/C and C non-zero

Our attack aims at two types of vulnerable representations:

Usual representations of curves E_a in projective coefficients:

- Montgomery form (A : C) with a = A/C and C non-zero
- alternative Montgomery form (A + 2C : 4C) with a = A/C and C non-zero

Our attack aims at two types of vulnerable representations:

Zero-value representation: Represents the Montgomery coefficient a ∈ 𝔽_p in projective coordinates (α : β) such that α = 0 or β = 0.

Usual representations of curves E_a in projective coefficients:

- Montgomery form (A : C) with a = A/C and C non-zero
- alternative Montgomery form (A + 2C : 4C) with a = A/C and C non-zero

Our attack aims at two types of vulnerable representations:

- Zero-value representation: Represents the Montgomery coefficient a ∈ 𝔽_p in projective coordinates (α : β) such that α = 0 or β = 0.

Vulnerable curves in CSIDH

• E_0 in Montgomery form: (0:C) with $C \in \mathbb{F}_p \setminus \{0\}$

• E_0 in Montgomery form: (0:C) with $C \in \mathbb{F}_p \setminus \{0\}$

 \rightsquigarrow zero-value representation

• E_0 in Montgomery form: (0:C) with $C \in \mathbb{F}_p \setminus \{0\}$

 \rightsquigarrow zero-value representation

• E_0 in alternative Montgomery form: (2C:4C) with $C \in \mathbb{F}_p \setminus \{0\}$

• E_0 in Montgomery form: (0:C) with $C \in \mathbb{F}_p \setminus \{0\}$

 \rightsquigarrow zero-value representation

E₀ in alternative Montgomery form: (2C: 4C) with C ∈ F_p\{0}
 → strongly-correlated representation if 2C < p/2

• E_0 in Montgomery form: (0: C) with $C \in \mathbb{F}_p \setminus \{0\}$

 \rightsquigarrow zero-value representation

E₀ in alternative Montgomery form: (2C : 4C) with C ∈ F_p\{0}
 → strongly-correlated representation if 2C < p/2

 \rightsquigarrow Both are detectable via side-channel analysis!

• E_0 in Montgomery form: (0: C) with $C \in \mathbb{F}_p \setminus \{0\}$

 \rightsquigarrow zero-value representation

E₀ in alternative Montgomery form: (2C : 4C) with C ∈ F_p\{0}
 → strongly-correlated representation if 2C < p/2

→ Both are detectable via side-channel analysis!

Also works for E_6 in alternative Montgomery form: (8*C* : 4*C*) with $C \in \mathbb{F}_p$ is strongly-correlated if 4C < p/2.

Attacking SQALE and CTIDH

Idea: Guess a secret key bit, and let the target's isogeny path pass over E_0 or E_6 if the guess was correct.

 \rightsquigarrow Correct guess can be confirmed by side-channel analysis.

Idea: Guess a secret key bit, and let the target's isogeny path pass over E_0 or E_6 if the guess was correct.

 \rightsquigarrow Correct guess can be confirmed by side-channel analysis.

 Constant-time CSIDH usually has an ordered evaluation of isogenies (modulo point rejections). Idea: Guess a secret key bit, and let the target's isogeny path pass over E_0 or E_6 if the guess was correct.

 \rightsquigarrow Correct guess can be confirmed by side-channel analysis.

- Constant-time CSIDH usually has an ordered evaluation of isogenies (modulo point rejections).
- Task: Find out the direction of the next step (also considering dummy isogenies).

• Assume we know the first k-1 isogeny steps $a_{k-1} = (-, +, -, \cdots, -)$.

- Assume we know the first k-1 isogeny steps $a_{k-1} = (-, +, -, \cdots, -)$.
- Guess e (+ or -) and set $a_{k,e} = a_{k-1} \parallel e$.

- Assume we know the first k-1 isogeny steps $a_{k-1} = (-, +, -, \cdots, -)$.
- Guess e (+ or -) and set $a_{k,e} = a_{k-1} \parallel e$.
- Pass E_{PK} calculated using $a_{k,e}^{-1}$ as public key.

- Assume we know the first k-1 isogeny steps $a_{k-1} = (-, +, -, \cdots, -)$.
- Guess e (+ or -) and set $a_{k,e} = a_{k-1} \parallel e$.
- Pass E_{PK} calculated using $a_{k,e}^{-1}$ as public key.
- If the k-th step passes over E₀, the guess was correct; otherwise, guess a different e and repeat.

- Assume we know the first k-1 isogeny steps $a_{k-1} = (-, +, -, \cdots, -)$.
- Guess e (+ or -) and set $a_{k,e} = a_{k-1} \parallel e$.
- Pass E_{PK} calculated using $a_{k,e}^{-1}$ as public key.
- If the k-th step passes over E₀, the guess was correct; otherwise, guess a different e and repeat.

SQALE uses the alternative Montgomery form (A + 2C : 4C).
 → we can detect E₀.

- SQALE uses the alternative Montgomery form (A + 2C : 4C).
 → we can detect E₀.
- SQALE uses large parameters (2048-bit to 9216-bit primes) and secret keys from {-1,1}".

- SQALE uses the alternative Montgomery form (A + 2C : 4C).
 → we can detect E₀.
- SQALE uses large parameters (2048-bit to 9216-bit primes) and secret keys from {-1,1}ⁿ.
- Ordered evaluation

- SQALE uses the alternative Montgomery form (A + 2C : 4C).
 → we can detect E₀.
- SQALE uses large parameters (2048-bit to 9216-bit primes) and secret keys from {-1,1}ⁿ.
- Ordered evaluation
- Adaptively recover key bits e_i with the generic approach.

- SQALE uses the alternative Montgomery form (A + 2C : 4C).
 → we can detect E₀.
- SQALE uses large parameters (2048-bit to 9216-bit primes) and secret keys from {-1,1}ⁿ.
- Ordered evaluation
- Adaptively recover key bits e_i with the generic approach.
- Each step can fail with a probability of 1/ℓ_i
 → increases the number of measurements.

 CTIDH switches between Montgomery and alternative Montgomery form.

 \rightsquigarrow we can detect E_0 .

Figure 1: CTIDH aka *the isogeny bus*¹

¹Talk by Krijn Reijnders: https://tinyurl.com/CTIDHBeepBeep Original pic of bus by Teddy O on https://unsplash.com/photos/jtpcrnqP2Mc

CTIDH [Banegas-Bernstein-Campos-Chou-Lange-Meyer-Smith-Sotáková-2021]

- CTIDH switches between Montgomery and alternative Montgomery form.
 → we can detect E₀.
- CTIDH uses a more complicated key space and hides the actual isogeny degrees in use.

Figure 1: CTIDH aka *the isogeny bus*¹

¹Talk by Krijn Reijnders: https://tinyurl.com/CTIDHBeepBeep Original pic of bus by Teddy O on https://unsplash.com/photos/jtpcrnqP2Mc

- CTIDH switches between Montgomery and alternative Montgomery form.
 → we can detect E₀.
- CTIDH uses a more complicated key space and hides the actual isogeny degrees in use.
- CTIDH uses an ordered evaluation, but we have to guess the direction and the degree of each isogeny.

Figure 1: CTIDH aka *the isogeny bus*¹

¹Talk by Krijn Reijnders: https://tinyurl.com/CTIDHBeepBeep Original pic of bus by Teddy O on https://unsplash.com/photos/jtpcrnqP2Mc
- CTIDH switches between Montgomery and alternative Montgomery form.
 → we can detect E₀.
- CTIDH uses a more complicated key space and hides the actual isogeny degrees in use.
- CTIDH uses an ordered evaluation, but we have to guess the direction and the degree of each isogeny.
- Each step can fail with a probability of $\approx 1/\ell_i$

Figure 1: CTIDH aka *the isogeny bus*¹

¹Talk by Krijn Reijnders: https://tinyurl.com/CTIDHBeepBeep Original pic of bus by Teddy O on https://unsplash.com/photos/jtpcrnqP2Mc

- CTIDH switches between Montgomery and alternative Montgomery form.
 → we can detect E₀.
- CTIDH uses a more complicated key space and hides the actual isogeny degrees in use.
- CTIDH uses an ordered evaluation, but we have to guess the direction and the degree of each isogeny.
- Each step can fail with a probability of $\approx 1/\ell_i$
- This increases the number of measurements.

¹Talk by Krijn Reijnders: https://tinyurl.com/CTIDHBeepBeep Original pic of bus by Teddy O on https://unsplash.com/photos/jtpcrnqP2Mc

Figure 1: CTIDH aka *the isogeny bus*¹

Simulation

We require ordered evaluations
 → exact positions of computations involving A and C resp. A + 2C and 4C are known!

- We require ordered evaluations
 → exact positions of computations involving A and C resp. A + 2C and 4C are known!
- Simulation gets Hamming weights of all limbs and adds noise.

- We require ordered evaluations
 → exact positions of computations involving A and C resp. A + 2C and 4C are known!
- Simulation gets Hamming weights of all limbs and adds noise.
- Checks for strong correlation.

- We require ordered evaluations
 → exact positions of computations involving A and C resp. A + 2C and 4C are known!
- Simulation gets Hamming weights of all limbs and adds noise.
- Checks for strong correlation.
- average #measurements in SQALE-2048: 8,273

- We require ordered evaluations
 → exact positions of computations involving A and C resp. A + 2C and 4C are known!
- Simulation gets Hamming weights of all limbs and adds noise.
- Checks for strong correlation.
- average #measurements in SQALE-2048: 8,273
- average #measurements in CTIDH-511: 85,000

Simulation for different noise levels (signal-to-noise-ratio):

Simulation

Countermeasures

Masking isogeny: Compute a ∗ E as 3⁻¹ ∗ (a ∗ (3 ∗ E)) with a masking isogeny 3 ∗ E of key space 2^k.
 → increases required #samples by factor 2^k

¹Thanks to the reviewers for this suggestion!

- Masking isogeny: Compute a ∗ E as 3⁻¹ ∗ (a ∗ (3 ∗ E)) with a masking isogeny 3 ∗ E of key space 2^k.
 → increases required #samples by factor 2^k
- Move to the surface:¹ Pick p ≡ 7 mod 8 and work on the surface of the isogeny graph (see [Castryck-Decru-2020]).
 → We are not aware of vulnerable curves in this setting.

¹Thanks to the reviewers for this suggestion!

Applicability to SIKE^\dagger

 The attack applies to SIKE too: *E*₀ and *E*₆ are valid curves in SIKE

Figure 2: Who is next?¹

¹*PQC*² : Post-Quantum Cryptography Cemetery

Original pic of cemetery by Caleb Fisher on https://unsplash.com/photos/pWLgynLQfgE

- The attack applies to SIKE too: *E*₀ and *E*₆ are valid curves in SIKE
- Attack guesses secret bits/trits and detects which leads to path over E₀ or E₆.

Figure 2: Who is next?¹

¹*PQC*² : Post-Quantum Cryptography Cemetery

Original pic of cemetery by Caleb Fisher on https://unsplash.com/photos/pWLgynLQfgE

- The attack applies to SIKE too: *E*₀ and *E*₆ are valid curves in SIKE
- Attack guesses secret bits/trits and detects which leads to path over E₀ or E₆.
- Required number of samples:

Scheme	SIKEp434	SIKEp503	SIKEp610	SIKEp751
Samples	228	265	320	398

Figure 2: Who is next?¹

 $^{^{1}\}textit{PQC}^{2}$: Post-Quantum Cryptography Cemetery

Original pic of cemetery by Caleb Fisher on https://unsplash.com/photos/pWLgynLQfgE

Thank you!

Paper: https://eprint.iacr.org/2022/904.pdf Simulation: https://github.com/PaZeZeVaAt/simulation