On being more than friendly

DiS lunch talk

Fabio Campos¹Jorge Chavez-Saab²Jesús-Javier Chi-Domínguez³Michael Meyer⁴Krijn Reijnders⁶Francisco Rodríguez-Henríquez³Peter Schwabe⁵Thom Wiggers⁶

April, 2021

- ¹ University of Applied Sciences Wiesbaden, Germany
- ² Departamento de Computación, CINVESTAV-IPN, Mexico
- ³ Cryptography Research Centre, TII, Abu Dhabi
- ⁴ University of Regensburg, Germany
- ⁵ Max Planck Institute for Security and Privacy, Bochum, Germany
- ⁶ Radboud University Nijmegen, The Netherlands

Main ideas of the ongoing project

- performance evaluation of CSIDH^{1,2} as Diffie-Hellman replacement
- post-quantum "CSIDH-OPTLS" vs post-quantum KEMTLS³
- optimized software for different variants of CSIDH
- high(er) security levels

¹Commutative Supersingular Isogeny Diffie-Hellman

²https://eprint.iacr.org/2018/383.pdf

³https://eprint.iacr.org/2021/779

Outline

CSIDH in a nutshell

Modular multiplication

• Implementation on 64-bit Intel

Current results

CSIDH in a nutshell

CSIDH (Commutative Supersingular Isogeny Diffie-Hellman)

- over \mathbb{F}_p with $p = 4 \cdot \ell_1 \cdots \ell_n 1$, s.t. ℓ_1, \dots, ℓ_n odd primes
- private key = (e_1, \dots, e_n) , s.t. $|e_i|$ = number of isogenies of degree ℓ_i

supersingular curves over \mathbb{F}_p $p = 659 = 4 \cdot 3 \cdot 5 \cdot 11 - 1$

CSIDH's Security

- ullet classical: problem of finding a path \simeq private key space
- quantum: relies on the size of prime p

Modular multiplication

Schoolbook and divide-and-conquer methods

Let
$$a = A_1 w + A_0$$
 and $b = B_1 w + B_0$

- Schoolbook: (4M + 1A) $a * b = A_1B_1w^2 + (A_0B_1 + A_1B_0)w + A_0B_0$
- Karatsuba: (3M + 4A) $a*b = A_1B_1w^2 + ((A_0+A_1)(B_0+B_1) - A_1B_1 - A_0B_0)w + A_0B_0)$
- Toom-Cook (*N*-way): splitting $A_n w^n + \cdots + A_1 w + A_0$ into *N* parts of n/N limbs

Montgomery reduction

Montgomery reduction

Algorithm 1: Montgomery reduction

```
Input : p = (p_{n-1}, \dots, p_1, p_0)_b w/ gcd(p, b) = 1,
	r = b^n, p' = -p^{-1} \mod b, and
	c = (c_{2n-1}, \dots, c_1, c_0)_b .
	Output: <math>c * r^{-1} \mod p.

1 A \leftarrow c, s.t. A = (a_{2n-1}, \dots, a_1, a_0)

2 for i \in \{0, \dots, (n-1)\} do

3 u_i \leftarrow a_i * p' \mod b

4 A \leftarrow A + u_i * p * b^i
```

- 5 $A \leftarrow A/b^n$
- 6 if $A \ge p$ then
- 7 $A \leftarrow A p$
- 8 return A

Montgomery friendly primes

Algorithm 2: Montgomery reduction

Input :
$$p = (p_{n-1}, \dots, p_1, p_0)_b \text{ w/ } gcd(p, b) = 1,$$

and $p' = -p^{-1} = 1 \mod b, r = b^n,$ and $c = (c_{2n-1}, \dots, c_1, c_0)_b$

Output: $c * r^{-1} \mod p$.

1
$$A \leftarrow c$$
, s.t. $A = (a_{2n-1}, \ldots, a_1, a_0)$

2 for
$$i \in \{0, \dots, (n-1)\}$$
 do

3
$$u_i \leftarrow a_i * p' \mod b$$

3
$$u_i \leftarrow a_i * p' \mod b$$

4 $A \leftarrow A + a_i * p * b^i$

5
$$A \leftarrow A/b^n$$

6 if
$$A \ge p$$
 then

7
$$A \leftarrow A - p$$

8 return A

In Memoriam: Peter L. Montgomery (1947-2020)

More than friendly?

More than friendly?

Algorithm 3: Intermediate Montgomery

reduction^a

Input : e-bits long prime
$$p = 2^{e_2}\alpha - 1$$
 s.t. $e_2 \ge e/2$ and $0 \le c < 2^e p$.

Output: $r_1 = c2^{-2e_2} \mod p$ and $0 \le r_1 \le p$.

$$1 \quad q_0 \leftarrow c \mod 2^{e_2}$$

2
$$r_0 \leftarrow (c - q_0)/2^{e_2} + q_0 * \alpha$$

$$3 q_1 \leftarrow r_0 \mod 2^{e_2}$$

4
$$r_1 \leftarrow (r_0 - q_1)/2^{e_2} + q_1 * \alpha$$

5
$$r_1' \leftarrow r_1 - p + 2^e$$

6 if
$$r_1' \geq 2^e$$
 then

7
$$r_1 \leftarrow r_1' \mod 2^e$$

8 return r₁

In Memoriam: Peter L. Montgomery (1947-2020)

^ahttps://eprint.iacr.org/2020/665.pdf

Implementation on 64-bit Intel

High level ideas

- dCSIDH and CTIDH sharing "constant-time" code
- optimized field arithmetic (MULX-Schoolbook, MULX-Karatsuba, GMP⁴, AVX2)
- quantum security of CSIDH under debate⁵:

prime bits	key space	NIST level	Mont. reduction
p2048	2 ²²¹	1 (aggresive)	standard
p4096	2^{256}	1 (conservative)	standard
p5120	2^{234}	2 (aggresive)	intermediate
p6144	2^{256}	2 (conservative)	intermediate
p8192	2 ³³²	3 (aggresive)	intermediate
p9216	2 ³⁸⁴	3 (conservative)	intermediate

⁴https://gmplib.org/

⁵https://eprint.iacr.org/2020/1520

Low level ideas@AVX2

- Reduced-radix Representation (radix = 26)
- signed representation → saving additions
- ullet Karatsuba + schoolbook (operand scanning) at ≤ 12 limbs
- rollout of Karatsuba layers → fewer multiplications
- interleaved multiplication

Current results

Current results and lessons learned

- AVX2 implementation is faster (not enough!)
- Intermediate reduction significantly faster
- CTIDH significantly faster than dCSIDH
- room for many wrong decisions
- More "theoretical" approach helpful?
 - operand vs product scanning?
 - number of Karatsuba layers?
 - interleaved vs non-interleaved multiplication?
 - which radix to choose?
 - signed vs unsigned?
 - ...
- @AVX2 carry handling /s/u/s/s harder than expected

Thank you for your attention. Let's be more than friendly.

