Trouble at the CSIDH: Protecting CSIDH
with Dummy-Operations against Fault
Injection Attacks

Fabio Campos!, Matthias J. Kannwischer?, Michael Meyer1'3, Hiroshi Onuki?,
Marc Stéttinger®

LRheinMain University of Applied Sciences, Germany
2Radboud University, The Netherlands

3University of Wiirzburg, Germany

4University of Tokyo, Japan

5Continental AG, Germany

somewhere in the crypto-heaven

LET US FINALLY
DESTROY SOMETHING!

THAT'S BORING!!! LET'S ATTACK
SOME FANCY STUFF LIKE ...
DUMMY-BASED
CONSTANT-TIME CSIDOH/

OK, OK! WHAT ABOUT ...
ONLY DEFINING & SIMULATING
SOME ATTACKS?

SIMULATION, MY A
AS SOON AS YOU
NOT PAYING ATTENTION,
I'M GONNA HIT IT SO00
HARD!

/=7

Comic art: Lua Campos

WHAAAT?/?
DO YOU WANT TO ATTACK
SOME BLOCKCHAIN AGAIN?

PLEASE DO NOT/
WE'RE HAVING ENOUGH
TROUBLE IN THE WORLD

RIGHT NOW/

WELL ... IF T KNOW SOME
WEAK POINTS, T MIGHT BE ABLE
TO PROTECT IT BETTER.

2/29

Preliminaries

Attacker models & simulation

Practical experiments

e Countermeasures & performance

3/29

Preliminaries

CSIDH : algorithmic description

e let p=4~¢1---L£, — 1 be prime, where ¢1,...,¢, are small
distinct odd primes

o let E4: y? = x3 4+ Ax? + x be a supersingular elliptic curve in
Montgomery form over I,

e points of orders ¢; for all 1 < i < n, which can be used as
input to compute an isogeny of degree /;,

e private key = (ey, ..., e,), where |e;| = number of isogenies of
degree ¢;
e sign of e; determines if order-¢; point on the curve or its twist

e ¢;'s sampled from small interval [—m, m]

4/29

Union of cycles

——— o

J
INIPIAIAK
O PEE:

= .
’.“‘2“‘1"";. e Nodes:

e
11 NN
7 NFLL
/ ,

] 7252505\
7~ N

Supersingular curves over [Fy419.

./,3245 e Undirected edges:

3-, 5-, and 7-isogenies.

Graph mostly "stolen” from Chloe Martindale

https://www.martindale.info/talks/QIT-Bristol.pdf
5/29

https://www.martindale.info/talks/QIT-Bristol.pdf

Dummy-based constant-time algorithms

Notions of ” constant-time”

e running time, branching, etc. do not depend on secrets, but

may vary because of randomness

e execution time is constant

Timing attacks

e number of isogenies depends on private key

e effort for multiplication depends on sign distribution of
private key

6/29

Dummy-based constant-time algorithms

Meyer, Campos, Reith (MCR)!

e maximal amount of isogenies using dummy isogenies
e exponents in [0,2m)] (instead of [—m, m]) avoid timing attacks

Onuki, Aikawa, Yamazaki, Takagi (OYAT)2

e two points to evaluate the action (avoid timing attacks)
e keeping exponent range [—m, m]

e compared to MCR: speed-up of 27.35%

'see https://ia.cr/2018/1198
%see https://ia.cr/2019/353

7/29

https://ia.cr/2018/1198
https://ia.cr/2019/353

Real vs dummy isogenies - different computation blocks

a/

compute kernel: — compute a 4——
K.P |, o

2K, ... 52K)

——compute ¢(P)————
\—> compute [(]K
Figure 1: Real isogeny
required computation

compute kernel: — compute a’

K. P

2]P, ..., [%]P @) dummy computation
———compute ¢(P

\—> compute [¢]P —%

Figure 2: Dummy isogeny 8/29

What about dummy-free constant-time?

Timings for constant-time CSIDH implementations@x36

Group action evaluation | Mcycles
not constant-time3 103
MCR* 298

OYAT* 230

dummy-free* 432

3almost unoptimized, see https://ia.cr/2018/782

“see https://ia.cr/2020/417
9/29

https://ia.cr/2018/782
https://ia.cr/2020/417

Clock glitching

Fault injection caused by clock glitching ~~ skip instruction(s)

input clock ‘

dock YO f [_
1 o

LOAD #1 LOAD #4
EXEC #3

LOAD #3
EXEC #2

10/29

Attacker models & simulation

Setup

3 attacker models with increasing capabilities

attacker performs single fault injection per run

repeatedly evaluation using same secret key
(static-static key exchange)

injects during computation of group action

e check if fault impacts shared secret

11/29

Setup

PA
Eo Ea
2
4 .
’° 0
4 .,
& .
L = attacked
. 4
SDB ,.' K2 SOB
k2 /',
& ’
4 .
VA
v
? !
Eg Eas L Epp
PA

12/29

1: Shotgun at the CSIDH

o weakest adversary model

e no control over location of fault injection

S

e no knowledge of order of injected isogeny

3

e ratio failures = ratio “real” vs. “dummy”

Photo: Rita Claveau on https://www.pinterest.it/

13/29

https://www.pinterest.it/

1: Shotgun at the CSIDH

Setup
e isogeny computations effort about 42%
e cost-simulation (python) output transcript of all operations
e parameterized by relative cost of operations
e fault into necessary operation ~~ wrong shared secret

e 100 randomly CSIDH512 keys and 500,000 fault injections

Impact
e correlation not strong enough

e key space reduction from 2256 to s 2249

14 /29

2: Aiming at isogenies at index i

e slightly more powerful

e target /-th isogeny computation

Photo: Piotr Wilk on https://unsplash.com/
15/29

https://unsplash.com/

2: Aiming at isogenies at index i

Setup

e deterministic computation of e; : real then dummy?®

e out of order due to point rejections

first isogenies have large orders /;

point rejection probability = 1//;

sequence of first 23 isogenies is almost deterministic

Impact

e best case: key space reduction from 22%° to 2177

®see https://ia.cr/2020/1006 for randomize order
16/29

https://ia.cr/2020/1006

3: Aiming at isogeny computations and tracing the order 1/2

e most powerful attacker model

e additional side-channel information
exploited

e able to trace the order (SPA) of the
attacked isogeny

Photo: Alan Belmer on https://freeimages.com/
17/29

https://freeimages.com/

3: Aiming at isogeny computations and tracing the order

Setup
e secret exponent e; sampled based on bound vector
m=(my, my,...,mp)
e binary search for each individual degree until first dummy

isogeny is identified

Impact
e MCR: full key recovery requires 178 injections
e OAYT: 178 injections ~» space reduction to 2°7:%* (average

case);
further reducible to ~ 2345 (meet-in-the-middle®)

®see https://ia.cr/2018/383
18/29

https://ia.cr/2018/383

Practical experiments

Setup

e plain C implementation
e reduced key space from 1174 to 32, secret keys € {—1,0,1}
e isogenies with smallest degrees (3 and 5)

e Bob's, Alice’s public key, and Alice's shared secret
precomputed

e computation of shared secret attacked

19/29

Setup

PA
Eo Ea
2
<& .
RAEY
R precomputed
/"’ ',., ~f
. ‘/
vE /'/ g ¥B attacked
"., /,
& .
7’ a
v
2 /
Eg Eas L Epp
PA

20/29

ChipWhisperer

iortace e ChipWhisperer-Lite ARM
e 32-bit STM32F303
e open source toolchain

e power analysis

©0000000

°
°
°
°
°
°
°
°
°
e

180

e voltage and clock glitching

!

Micro-USB (power + comms)

Figure 3: cwl173

21/29

Accuracy of the results

Randomized attacks
(w/o knowledge of critical points)

type key # of trials faulty shared secret
{0,0} 5000 19.8%
attack 1 | {0,1} 5000 27.3%
{-1,1} 5000 32.8%
{0,1} 5000 2.1%

attack 2
{-1,1} 5000 16.4%

Targeting critical spots
e empirically determined with manageable effort

e accuracy of over 95% with single injection
22/29

Countermeasures & performance

Real vs dummy - different computation blocks

K,.P

« r_|
compute kernel: compute a

2K, SRR

——compute ¢(P)—

\—> compute [(]K

Figure 4: Real isogeny

/
compute kernel: > compute a

[] "“’[1]
2]l ol
——compute ¢(P)

\—> compute [(]P ————

required computation

dummy computation

e

Figure 5: Dummy isogeny

23/29

Countermeasures

Basic idea

e detect injections by changing arithmetic operations

Objectives
e fault injection ~~ output an error instead of curve

e countermeasures for both cases to maintain constant-time

Conditional functions
e cadd(x,y, b): returns x + by
e cadd2(x,y, b): returns bx + by
e csub(x,y, b): returns x — by

e cverify(x,y, b), checks x =y, only outputs result if b =1

24/29

Countermeasures: protecting the codomain curve

Input : Curve parameters A, C € Fp, degree ¢, kernel points (X; : Z;) for
1<i<(¢—1)/2, bitmask b € {0,1}.
Output: Curve parameters A’, C’ € [Fp, error variable error.

1 Setmmy «+ 1, m— «+ 1 b=0 b=1

2 forie{l,...,(¢—1)/2} do (dummy) (real)

3 to < cadd(X;, Z;, b) to = X; to=Xi+Z;

4 t] < Csub(x,'7 Z;, b) th=X; th=Xi—Z

5 T4 < T4 - o m =[] % m =[x + 2:)
6 W= = = © (il =] % =[x - 2)
7 tp < cadd2(C, C, b) t =0 t =2C

8 t1<—(A—t0)£~71'§ t = AL 7® t; =(A-20)" =8
9 to + (A+1to)t-nd to= A" -7} to=(A+20) -7}
10 A’ < cadd(ty, to, b) A=t A=ty +t

11 A + cadd(A’, A, b) A=t A =2ty +1)

12 C’ < csub(tp, t1, b) C' =ty C'=ty—t;

13 error < cverify(A’, C',=b) atc

14 return A’, C’, error

25 /29

Other protected spots/scenarios

point evaluation@dummy

differential additionsQreal

Elligator

loop-abort faults

decision bits

theoretical " twist-attack”

26 /29

Performance results on ARM

Overhead for one group action CSIDH512 on Cortex-M4

STM32F407 \ STM32F3037
5% | +7%

"core on ChipWhisperer-Lite
27/29

Conclusions

relatively small overhead 5% to 7%
e some countermeasures applicable to dummy-free variants

CSIDH painfully slow ~~ experiments with full scheme

infeasible

ChipWhisperer: perfectly adequate

28/29

Paper: https://ia.cr/2020/1005
Code: https://github.com/csidhfi/csidhfi

Thank you for your attention!

SUT 808 ... IN A
OH ALICE ... YOU'RE QUANTUM WORLO
THE ONE FOR ME. HOW CAN WE 8E SURE?
IT'S LOOKING SPOOKIER
THAN EVER!

Alice by engin akyurt, Bob by Philipp Lansing on https://unsplash.com/
29/29

https://ia.cr/2020/1005
https://github.com/csidhfi/csidhfi
https://unsplash.com/

	Preliminaries
	Attacker models & simulation
	Practical experiments
	Countermeasures & performance

