
Trouble at the CSIDH: Protecting CSIDH

with Dummy-Operations against Fault

Injection Attacks

Fabio Campos1, Matthias J. Kannwischer2, Michael Meyer1,3, Hiroshi Onuki4,

Marc Stöttinger5

1RheinMain University of Applied Sciences, Germany
2Radboud University, The Netherlands
3University of Würzburg, Germany
4University of Tokyo, Japan
5Continental AG, Germany

somewhere in the crypto-heaven ...

Comic art: Lua Campos
2 / 29

Outline

Preliminaries

Attacker models & simulation

Practical experiments

Countermeasures & performance

3 / 29

Preliminaries

CSIDH : algorithmic description

• let p = 4`1 · · · `n − 1 be prime, where `1, . . . , `n are small

distinct odd primes

• let EA : y2 = x3 + Ax2 + x be a supersingular elliptic curve in

Montgomery form over Fp

• points of orders `i for all 1 ≤ i ≤ n, which can be used as

input to compute an isogeny of degree `i ,

• private key = (e1, . . . , en), where |ei | = number of isogenies of

degree `i

• sign of ei determines if order-`i point on the curve or its twist

• ei ’s sampled from small interval [−m,m]

4 / 29

Union of cycles

• Nodes:

Supersingular curves over F419.

• Undirected edges:

3-, 5-, and 7-isogenies.

Graph mostly ”stolen” from Chloe Martindale

https://www.martindale.info/talks/QIT-Bristol.pdf
5 / 29

https://www.martindale.info/talks/QIT-Bristol.pdf

Dummy-based constant-time algorithms 1/2

Notions of ”constant-time”

• running time, branching, etc. do not depend on secrets, but

may vary because of randomness

• execution time is constant

Timing attacks

• number of isogenies depends on private key

• effort for multiplication depends on sign distribution of

private key

6 / 29

Dummy-based constant-time algorithms 2/2

Meyer, Campos, Reith (MCR)1

• maximal amount of isogenies using dummy isogenies

• exponents in [0, 2m] (instead of [−m,m]) avoid timing attacks

Onuki, Aikawa, Yamazaki, Takagi (OYAT)2

• two points to evaluate the action (avoid timing attacks)

• keeping exponent range [−m,m]

• compared to MCR: speed-up of 27.35%

1see https://ia.cr/2018/1198
2see https://ia.cr/2019/353

7 / 29

https://ia.cr/2018/1198
https://ia.cr/2019/353

Real vs dummy isogenies - different computation blocks

K ,P
compute kernel:

[2]K , ..., [`−1
2

]K

compute a′

compute ϕ(P)

compute [`]K

a′

ϕ(P)

Figure 1: Real isogeny

K ,P
compute kernel:

[2]P, ..., [`−1
2

]P

compute a′

compute ϕ(P)

compute [`]P
[`]P

a

Figure 2: Dummy isogeny

dummy computation

required computation

8 / 29

What about dummy-free constant-time?

Timings for constant-time CSIDH implementations@x86

Group action evaluation Mcycles

not constant-time3 103

MCR4 298

OYAT4 230

dummy-free4 432

3almost unoptimized, see https://ia.cr/2018/782
4see https://ia.cr/2020/417

9 / 29

https://ia.cr/2018/782
https://ia.cr/2020/417

Clock glitching

Fault injection caused by clock glitching skip instruction(s)

10 / 29

Attacker models & simulation

Setup 1/2

• 3 attacker models with increasing capabilities

• attacker performs single fault injection per run

• repeatedly evaluation using same secret key

(static-static key exchange)

• injects during computation of group action

• check if fault impacts shared secret

11 / 29

Setup 2/2

E0

ϕA

EA

ϕB

EB

ϕ̃A

EAB
?
= E ′

AB

ϕ̃′
B

attacked

12 / 29

1: Shotgun at the CSIDH 1/2

• weakest adversary model

• no control over location of fault injection

• no knowledge of order of injected isogeny

• ratio failures =̂ ratio “real” vs. “dummy”

Photo: Rita Claveau on https://www.pinterest.it/
13 / 29

https://www.pinterest.it/

1: Shotgun at the CSIDH 2/2

Setup

• isogeny computations effort about 42%

• cost-simulation (python) output transcript of all operations

• parameterized by relative cost of operations

• fault into necessary operation wrong shared secret

• 100 randomly CSIDH512 keys and 500,000 fault injections

Impact

• correlation not strong enough

• key space reduction from 2256 to ≈ 2249

14 / 29

2: Aiming at isogenies at index i 1/2

• slightly more powerful

• target i-th isogeny computation

Photo: Piotr Wilk on https://unsplash.com/
15 / 29

https://unsplash.com/

2: Aiming at isogenies at index i 2/2

Setup

• deterministic computation of ei : real then dummy5

• out of order due to point rejections

• first isogenies have large orders `i

• point rejection probability = 1/`i

• sequence of first 23 isogenies is almost deterministic

Impact

• best case: key space reduction from 2256 to 2177

5see https://ia.cr/2020/1006 for randomize order
16 / 29

https://ia.cr/2020/1006

3: Aiming at isogeny computations and tracing the order 1/2

• most powerful attacker model

• additional side-channel information

exploited

• able to trace the order (SPA) of the

attacked isogeny

Photo: Alan Belmer on https://freeimages.com/
17 / 29

https://freeimages.com/

3: Aiming at isogeny computations and tracing the order 2/2

Setup

• secret exponent ei sampled based on bound vector

m = (m1,m2, . . . ,mn)

• binary search for each individual degree until first dummy

isogeny is identified

Impact

• MCR: full key recovery requires 178 injections

• OAYT: 178 injections space reduction to 267.04 (average

case);

further reducible to ≈ 234.5 (meet-in-the-middle6)

6see https://ia.cr/2018/383
18 / 29

https://ia.cr/2018/383

Practical experiments

Setup 1/2

• plain C implementation

• reduced key space from 1174 to 32, secret keys ∈ {−1, 0, 1}

• isogenies with smallest degrees (3 and 5)

• Bob’s, Alice’s public key, and Alice’s shared secret

precomputed

• computation of shared secret attacked

19 / 29

Setup 2/2

E0

ϕA

EA

ϕB

EB

ϕ̃A

EAB
?
= E ′

AB

ϕ̃′
B attacked

precomputed

20 / 29

ChipWhisperer

Figure 3: cw1173

• ChipWhisperer-Lite ARM

• 32-bit STM32F303

• open source toolchain

• power analysis

• voltage and clock glitching

21 / 29

Accuracy of the results

Randomized attacks
(w/o knowledge of critical points)

type key # of trials faulty shared secret

attack 1

{0,0} 5000 19.8%

{0,1} 5000 27.3%

{-1,1} 5000 32.8%

attack 2
{0,1} 5000 2.1%

{-1,1} 5000 16.4%

Targeting critical spots

• empirically determined with manageable effort

• accuracy of over 95% with single injection

22 / 29

Countermeasures & performance

Real vs dummy - different computation blocks

K ,P
compute kernel:

[2]K , ..., [`−1
2

]K

compute a′

compute ϕ(P)

compute [`]K

a′

ϕ(P)

Figure 4: Real isogeny

K ,P
compute kernel:

[2]P, ..., [`−1
2

]P

compute a′

compute ϕ(P)

compute [`]P
[`]P

a

Figure 5: Dummy isogeny

dummy computation

required computation

23 / 29

Countermeasures

Basic idea

• detect injections by changing arithmetic operations

Objectives

• fault injection output an error instead of curve

• countermeasures for both cases to maintain constant-time

Conditional functions

• cadd(x , y , b): returns x + by

• cadd2(x , y , b): returns bx + by

• csub(x , y , b): returns x − by

• cverify(x , y , b), checks x = y , only outputs result if b = 1

24 / 29

Countermeasures: protecting the codomain curve

25 / 29

Other protected spots/scenarios

• point evaluation@dummy

• differential additions@real

• Elligator

• loop-abort faults

• decision bits

• theoretical ”twist-attack”

26 / 29

Performance results on ARM

Overhead for one group action CSIDH512 on Cortex-M4

STM32F407 STM32F3037

+5% +7%

7core on ChipWhisperer-Lite
27 / 29

Conclusions

• relatively small overhead 5% to 7%

• some countermeasures applicable to dummy-free variants

• CSIDH painfully slow experiments with full scheme

infeasible

• ChipWhisperer: perfectly adequate

28 / 29

Paper: https://ia.cr/2020/1005

Code: https://github.com/csidhfi/csidhfi

Thank you for your attention!

Alice by engin akyurt, Bob by Philipp Lansing on https://unsplash.com/
29 / 29

https://ia.cr/2020/1005
https://github.com/csidhfi/csidhfi
https://unsplash.com/

	Preliminaries
	Attacker models & simulation
	Practical experiments
	Countermeasures & performance

