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Preliminaries



CSIDH : algorithmic description

• let p = 4`1 · · · `n − 1 be prime, where `1, . . . , `n are small

distinct odd primes

• let EA : y2 = x3 + Ax2 + x be a supersingular elliptic curve in

Montgomery form over Fp

• points of orders `i for all 1 ≤ i ≤ n, which can be used as

input to compute an isogeny of degree `i ,

• private key = (e1, . . . , en), where |ei | = number of isogenies of

degree `i

• sign of ei determines if order-`i point on the curve or its twist

• ei ’s sampled from small interval [−m,m]
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Union of cycles

• Nodes:

Supersingular curves over F419.

• Undirected edges:

3-, 5-, and 7-isogenies.

Graph mostly ”stolen” from Chloe Martindale

https://www.martindale.info/talks/QIT-Bristol.pdf
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Dummy-based constant-time algorithms 1/2

Notions of ”constant-time”

• running time, branching, etc. do not depend on secrets, but

may vary because of randomness

• execution time is constant

Timing attacks

• number of isogenies depends on private key

• effort for multiplication depends on sign distribution of

private key
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Dummy-based constant-time algorithms 2/2

Meyer, Campos, Reith (MCR)1

• maximal amount of isogenies using dummy isogenies

• exponents in [0, 2m] (instead of [−m,m]) avoid timing attacks

Onuki, Aikawa, Yamazaki, Takagi (OYAT)2

• two points to evaluate the action (avoid timing attacks)

• keeping exponent range [−m,m]

• compared to MCR: speed-up of 27.35%

1see https://ia.cr/2018/1198
2see https://ia.cr/2019/353
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Real vs dummy isogenies - different computation blocks
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Figure 1: Real isogeny
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Figure 2: Dummy isogeny

dummy computation

required computation
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What about dummy-free constant-time?

Timings for constant-time CSIDH implementations@x86

Group action evaluation Mcycles

not constant-time3 103

MCR4 298

OYAT4 230

dummy-free4 432

3almost unoptimized, see https://ia.cr/2018/782
4see https://ia.cr/2020/417
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Clock glitching

Fault injection caused by clock glitching  skip instruction(s)
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Attacker models & simulation



Setup 1/2

• 3 attacker models with increasing capabilities

• attacker performs single fault injection per run

• repeatedly evaluation using same secret key

(static-static key exchange)

• injects during computation of group action

• check if fault impacts shared secret
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Setup 2/2

E0

ϕA

EA

ϕB

EB

ϕ̃A

EAB
?
= E ′

AB

ϕ̃′
B

attacked

12 / 29



1: Shotgun at the CSIDH 1/2

• weakest adversary model

• no control over location of fault injection

• no knowledge of order of injected isogeny

• ratio failures =̂ ratio “real” vs. “dummy”

Photo: Rita Claveau on https://www.pinterest.it/
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1: Shotgun at the CSIDH 2/2

Setup

• isogeny computations effort about 42%

• cost-simulation (python) output transcript of all operations

• parameterized by relative cost of operations

• fault into necessary operation  wrong shared secret

• 100 randomly CSIDH512 keys and 500,000 fault injections

Impact

• correlation not strong enough

• key space reduction from 2256 to ≈ 2249
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2: Aiming at isogenies at index i 1/2

• slightly more powerful

• target i-th isogeny computation

Photo: Piotr Wilk on https://unsplash.com/
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2: Aiming at isogenies at index i 2/2

Setup

• deterministic computation of ei : real then dummy5

• out of order due to point rejections

• first isogenies have large orders `i

• point rejection probability = 1/`i

• sequence of first 23 isogenies is almost deterministic

Impact

• best case: key space reduction from 2256 to 2177

5see https://ia.cr/2020/1006 for randomize order
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3: Aiming at isogeny computations and tracing the order 1/2

• most powerful attacker model

• additional side-channel information

exploited

• able to trace the order (SPA) of the

attacked isogeny

Photo: Alan Belmer on https://freeimages.com/
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3: Aiming at isogeny computations and tracing the order 2/2

Setup

• secret exponent ei sampled based on bound vector

m = (m1,m2, . . . ,mn)

• binary search for each individual degree until first dummy

isogeny is identified

Impact

• MCR: full key recovery requires 178 injections

• OAYT: 178 injections  space reduction to 267.04 (average

case);

further reducible to ≈ 234.5 (meet-in-the-middle6)

6see https://ia.cr/2018/383
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Practical experiments



Setup 1/2

• plain C implementation

• reduced key space from 1174 to 32, secret keys ∈ {−1, 0, 1}

• isogenies with smallest degrees (3 and 5)

• Bob’s, Alice’s public key, and Alice’s shared secret

precomputed

• computation of shared secret attacked
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Setup 2/2
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ChipWhisperer

Figure 3: cw1173

• ChipWhisperer-Lite ARM

• 32-bit STM32F303

• open source toolchain

• power analysis

• voltage and clock glitching
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Accuracy of the results

Randomized attacks
(w/o knowledge of critical points)

type key # of trials faulty shared secret

attack 1

{0,0} 5000 19.8%

{0,1} 5000 27.3%

{-1,1} 5000 32.8%

attack 2
{0,1} 5000 2.1%

{-1,1} 5000 16.4%

Targeting critical spots

• empirically determined with manageable effort

• accuracy of over 95% with single injection
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Countermeasures & performance



Real vs dummy - different computation blocks
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Figure 4: Real isogeny
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Figure 5: Dummy isogeny

dummy computation

required computation
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Countermeasures

Basic idea

• detect injections by changing arithmetic operations

Objectives

• fault injection  output an error instead of curve

• countermeasures for both cases to maintain constant-time

Conditional functions

• cadd(x , y , b): returns x + by

• cadd2(x , y , b): returns bx + by

• csub(x , y , b): returns x − by

• cverify(x , y , b), checks x = y , only outputs result if b = 1
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Countermeasures: protecting the codomain curve
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Other protected spots/scenarios

• point evaluation@dummy

• differential additions@real

• Elligator

• loop-abort faults

• decision bits

• theoretical ”twist-attack”

26 / 29



Performance results on ARM

Overhead for one group action CSIDH512 on Cortex-M4

STM32F407 STM32F3037

+5% +7%

7core on ChipWhisperer-Lite
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Conclusions

• relatively small overhead 5% to 7%

• some countermeasures applicable to dummy-free variants

• CSIDH painfully slow  experiments with full scheme

infeasible

• ChipWhisperer: perfectly adequate
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Paper: https://ia.cr/2020/1005

Code: https://github.com/csidhfi/csidhfi

Thank you for your attention!

Alice by engin akyurt, Bob by Philipp Lansing on https://unsplash.com/
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